Review and Discussion of New AM Detuning Requirements

Jeremy D. Ruck, PE Jeremy Ruck & Associates, Inc. Canton, Illinois jeremy@jeremyruck.com

Broadcasters Clinic 2014

jeremy@jeremyruck.com

Broadcasters Clinic 2014 jeremy@jeremyruck.com

Broadcasters Clinic 2014

jeremy@jeremyruck.com

Review and Discussion of New AM Detuning Requirements

Jeremy D. Ruck, PE Jeremy Ruck & Associates, Inc. Canton, Illinois jeremy@jeremyruck.com

The New Requirements

- Became effective February 20, 2014.
- Revised previous procedures.
- Part of AM DA Verification Proceedings.
- MM Docket 93-177.
- Original proceeding began in 1991.

History

- Concern dates back at least fifty years.
- Ties in with "last guy on" concept.
- This concept is even older.
- Valid in other areas but less overt as before.
- Requirements were inconsistent.
- Requirements were nebulous.

New Rule Fundamentals

- Now applicable to <u>ALL</u> services.
- Three main parts to the new rules.
- Threshold Test Is study necessary?
- Study Methodology How to make study.
- Notification Requirements.
- Rules spelled out in Sections 1.30000-30004

To Whom Does this Apply?

- AM.
- FM.
- TV.
- BAS.
- Two-Way.
- Amateur Radio.
- EVERY Authorization.

Threshold Test

- Structure Distance.
- Structure Height.
- Modification/Construction Type.

Offending Structure Distance

- Previous requirements were fixed distance.
- Distance depended on operation mode.
- Current requirements frequency dependent.
- Operation mode dependency remains.
- Distance is to AM antenna location.

Non-Directional Threshold

- Location within one-wavelength.
- Height 60 degrees or greater.

Directional Threshold

- Lesser of 10 wavelengths or 3 kilometers.
- Height 36 degrees or greater.

Wavelength

- Recall the inverse relationship between wavelength and frequency.
- Velocity of light is the product of wavelength and frequency.
- Wavelength can be solved for by dividing velocity of light by frequency.

Wavelength

Wavelength Distance Examples

- 540 kHz 555 meters / 1822 feet / 0.34 miles.
- 1000 kHz 300 meters / 984 feet / 0.19 miles.
- 1600 kHz 187 meters / 615 feet / 0.12 miles.
- 1700 kHz 176 meters / 578 feet / 0.11 miles.

Electrical Degrees

- Will see on AM authorizations.
- Convenient way of expressing height.
- Actual height frequency dependent.
- 360 degrees in wavelength.
- 60 degrees 1/6 wavelength.
- 36 degrees 1/10 wavelength.

Electrical Degree Examples

- 60 degrees at 540 kHz = 304 feet.
- 36 degrees at 540 kHz = 182 feet .
- 60 degrees at 1000 kHz = 164 feet.
- 36 degrees at 1000 kHz = 98 feet.
- 60 degrees at 1600 kHz = 103 feet.
- 36 degrees at 1700 kHz = 62 feet.

Non-D Threshold Examples

- 540 kHz ND 304 feet at 0.34 miles distant.
- 1000 kHz ND 164 feet at 0.19 miles distant.
- 1600 kHz ND 103 feet at 0.12 miles distant.

Directional Threshold

- More complex.
- Lesser of 3 kilometers or 10 wavelengths.
- \blacksquare 3 km = 9,842 feet or 1.86 miles.
- Equivalency point at 1000 kHz.
- Below 1000 kHz use 3 km.
- Above 1000 kHz use 10λ.

Calculating Distance from AM

- Distance is based on tower location for ND.
- Distance is based on array center for DA.
- Broadcast coordinates based on NAD27.
- Wireless coordinates based on NAD83.
- NAD83 approximately 0.5 second west here.
- Approximately 36 feet differential.

Calculating Distance from AM

- Ensure coordinates are in same datum.
- Verify coordinates.
- Use the FCC web utility.
- FCC method preferred over great circle.

Construction and Mods

- Classified as major or minor.
- New structure construction considered major.
- Tower height alteration by 5 degrees or more.
- Detuned towers.
- Base insulated towers.
- Antennas and/or transmission changes.

Additional Considerations

- Towers located on buildings considered.
- Analysis required if tower by itself meets previously discussed criteria.
- Building presence is ignored.
- Outside criteria assumes no impact.
- Station could still be affected.

 A new tower 300 feet in height is proposed to be located 1700 feet from a 600 kHz ND.

$$\lambda = \frac{c}{f} = \frac{299792458}{6000000} *3.2808 = 1639.3 feet$$

$$G = \frac{h}{\lambda} *360 = \frac{300}{1639.3} *360 = 65.9^{\circ}$$

Tower does not exceed requirements.

A proposed monopole of height 164 feet is to be constructed 2,459 feet from a four-tower inline directional array that operates on 1000 kHz. The proposed monopole will be located at 180 degrees true from the array.

$$\lambda = \frac{c}{f} * 3.2808 = \frac{299792458}{1000000} * 3.2808 = 983.56 feet$$

$$h = 164 feet$$

$$G = \frac{360h}{\lambda} = \frac{360 * 164}{983.56} = 60^{\circ}$$

$$S = \frac{360d}{\lambda} = \frac{360 * 2459}{983.56} = 900^{\circ}$$

$$x = \frac{900}{360} \rightarrow x = 2.5\lambda$$

$$km = \frac{d}{5280} * 1.609 = \frac{2459}{5280} * 1.609 = 0.75$$

Tower	Orientation	Spacing	Field	Phase	Height
1	0.0	0.0	1.000	0.0	90.0
2	0.0	90.0	1.180	+105.0	90.0
3	0.0	180.0	1.320	+157.0	90.0
4	0.0	270.0	1.180	-111.0	90.0

- Note the proposed structure impacts the directional pattern.
- Permissible impact is less than 2 dB.
- In this case some azimuths are disturbed by nearly 4 dB.

Azimuth	Field	Dist. Field	Ratio	dB Change
20	40.141	35.676	o.8888	-1.02
25	24.563	17.562	0.7150	-2.91
30	17.833	11.590	0.6499	-3.74
35	32.420	24.902	0.7681	-2.29
40	53.617	42.184	0.7868	-2.08
45	74.364	65.840	0.8854	-1.06
315	74.364	65.840	0.8854	-1.06
320	53.617	42.184	0.7868	-2.08
325	32.420	24.902	0.7681	-2.29
330	17.833	11.590	0.6499	-3.74
335	24.563	17.562	0.7150	-2.91
340	40.141	35.676	0.8888	-1.02

- Model predicted detuning reactance to ground is +j678 ohms.
- At 1000 kHz this requires ~107 μ H.
- Skirting tower will change this value due to reactance of skirt.

Azimuth	Field	Detuned Field	Ratio	dB Change
20	40.141	40.151	1.0003	0.00
25	24.563	24.222	0.9861	-0.12
30	17.833	16.305	0.9143	-0.78
35	32.420	30.679	0.9463	-0.48
40	53.617	51.812	0.9663	-0.30
45	74.364	72.400	0.9736	-0.23
315	74.364	72.400	0.9736	-0.23
320	53.617	51.812	0.9663	-0.30
325	32.420	30.679	0.9463	-0.48
330	17.833	16.305	0.9143	-0.78
335	24.563	24.222	0.9861	-0.12
340	40.141	40.151	1.0003	-0.00

Mounting Antennas on Towers

- ND towers require indirect method.
- Perform base impedance measurements.
- If variance exceeds 2% BZ app required.
- DA by field strength requires partial proof before and after construction.

Mounting Antennas on Towers

- Measure base impedance of tower on which antenna is mounted.
- Maintain record of measurement.
- New model required for resistance variance of more than 2 ohms and 4 percent.
- Other towers can be ignored.

Notification Process

- At least 30 days prior.
- Uses CDBS information.
- May be oral or written.
- Documentation required for oral.
- Expedited processing possible.
- 5 days for emergency situations.

Final Considerations

- Structures outside criteria may impact.
- Notify FCC within two years.
- Use moment method or field strength.
- Field strength readings may be used for compliance by proponent.
- Watch the horizon.

Thank You! Questions and Discussion...

Jeremy D. Ruck, PE Jeremy Ruck & Associates, Inc. P.O. Box 415 Canton, IL 61520 309.647.1200 jeremy@jeremyruck.com