

The transition to ATSC 3.0

October 2019

Michael Guthrie

Technology Specialist michael.guthrie@harmonicinc.com

Making the ATSC 3.0 transition

- The need for channel sharing
- ATSC 1.0 Channel Sharing
- ATSC 3.0 Channel Sharing
- The basics of statistical multiplexing

Channel Sharing: Lighthouses and Nightlights

- ATSC 3.0 will require extensive channel sharing
- Most stations will need at least two shares: ATSC 1.0 and ATSC 3.0
- Bit rate agreements are difficult and often reflect a lack of knowledge of how statistical multiplexing works
- Fair agreements need to address time as well as rate
- The interconnection between stations is often overlooked until its too late.....
 - The interconnection often drives both cost and video quality (for good or bad)
 - Reusing an ATSC 1.0 signal for ATSC 3.0 defeats the whole purpose of ATSC 3.0
 - Poor channel share implementations degrade quality and reduce useable channel count

How can we make ATSC 1.0 work for the nightlights?

ATSC 1.0 Channel Sharing

- The ATSC conversion is driven by channel sharing
- During each phase ATSC 1.0 will usually be the limiting factor
- The FCC requires that ATSC 1.0 coverage must retain 95% of the audience
 - Applies to the primary channel
 - This may eliminate some hosts if their coverage is less
- Most stations want to retain all of their existing channels
- ATSC 3.0 can (usually) carry more channels than ATSC 1.0
- Spreading shared ATSC 1.0 channels across several stations can optimize VQ
- A market wide approach is best
 - station pairing offers too little ATSC 1.0 capacity
- The ATSC 1.0 Nightlight will evolve as the 3.0 audience grows

MPEG 2 Efficiency Improvements

- MPEG codecs, MPEG2, AVC, HEVC all specify the <u>decoder</u>
- MPEG 2 encoders are <u>still</u> improving
- HD has improved more than SD
 - Within MPEG2
 - AVC and HEVC also favor higher resolutions
- MPEG 2 HD encoding efficiency is about double what it was in 1999
- Improvements generally fall into categories:
 - Codec, Statmux, Filtering
- Major leaps are rare, but there have been several:
 - Optimized Variable GOP (Codec)
 - Lookahead and multiple lookahead (Statmux & Filters)
 - MCTF (motion compensated temporal) (filter)
 - Single slice (codec)
- But....Most improvements are small but cumulative: 1% or 2% at a time

What bitrate do I need?

- There is no real answer!
- Basic parameters:
 - minimum
 - maximum
 - priority
 - total pool size / # of services
- The bitrate for a given quality level depends on:

 - Video format (1080i, 720p etc.)
 Content: Sports, Entertainment, Film, Hand animated, Computer animated...
 - Your taste
 - The market size
- In ATSC 1.0 the number of channels considered to have acceptable quality (by their management) varies widely
 - Examples:
 - Small market channel share (3 way, 2 independent + Public TV): 3 HD + 7 SD
 - Large market (O&O): 2 HD + 5 SD (limited sports)
 - Large market (O&O): 2 HD + 2 SD (Sports on both HD's)
- In the end the quality must be appropriate for the content
- It must serve the interests of the staion(s) and the public

Making the ATSC 1.0 share work

- More stations = more opportunity to optimize the mix of channels on the 1.0 stations
- The primary HD channel shares represent opportunity for Public and Independent stations
 - These stations often don't carry sports
 - Bitrate agreements are difficult, often its more productive to treat bitrates as a fallback
 - The primary agreement should allow optimization of the encoding system,
 i.e. maximize overall VQ first
- It is possible to fit two HD channels even with simultaneous sporting events
 - There are many examples from the spectrum auction
 - Controlling the rate of any accompanying SD channels is critical
 - HD sharing with HD is often more efficient than a mix of HD and SD
- Rather than try to specify SD bitrates, it is often better to treat them as equal, but with less priority than the primary channels

Things to consider in a contract

- Never specify a "minimum" bitrate. This = CBR
- Average is better
 - Average over what time frame?
 - Consider a day, or a week to allow for sporting events
 - Tools are available to log bitrates
 - It is possible to have deterministic average bitrates
 But letting the encoder decide often offers better performance
- Specifying equal settings is often more efficient than trying to specify bitrates
 - Equal settings should provide equal VQ if the encoder is well designed
 - The contract can contain language based on bitrates to settle disputes if necessary
- Split the channels into groups, settings for the primary channels, other settings for the secondary channels
- Bitrate logging with adjustment good faith agreement can allow higher quality for all

ATSC 3.0 Rollout

ATSC 3.0 transition over time

- The initial rollout period (2019 late 2020)
 - Few 3.0 TV's
 - Service is required to kick start the consumer market
 - Occasional UHD / HDR special programming will become available
- Full service (2021 2022)
 - Quality and services must clearly distinguish 3.0 as an improvement over 1.0
 - Network programming should be available 1080p HDR
 - SFN and OTT hybrid transmissions can improve quality and quantity of services

Crossover

- The number of 3.0 households will eventually crossover 1.0
- MVPD's will eventually carry 3.0 services
- Some of the 1.0 stations will convert, placing new demands on the remaining nightlights
- Eventually 1.0 service will be reduced as stations reach the 5 year timeout, assuming 3.0 is more profitable

PLP's: A lot of choices

- Physical Layer Pipes
 - Use up to 4 PLP's
 - Each PLP can have different modulation and bandwidth
 - The parameters for each PLP are chosen for specific services
 - Indoor, mobile, portable services require robust modulation
 - UHD or high channel count HD may require less robust modulation in order to carry enough bits
 - Single Frequency Networks may support different choices than a single transmitter
 - A robust PLP for service announcement can extend OTT availability
- A single PLP in the middle of the range will yield 24 to 26 Mb/s

ATSC 3.0 Lighthouse

- Assumptions:
 - 25 Mb/s
 - Stations transmit 1080p59.9
 - Statistical multiplexing is used
 - Capacity for a single transmitter will likely be 4 to 6 primary channels
 - 720p59.9 for some stations would increase this capacity
- In the initial rollout the goal is likely to replicate the primary ATSC 1.0 services
 - The goal should be to very quickly achieve better quality than the ATSC 1.0 services
 - This is the time to eliminate Interlace
 - Reusing the ATSC 1.0 transmission is only OK until there are TV's available
- UHD will be an issue.
 - Useful bitrates for UHD are 2 to 3 times the 1080p rates
 - Typical transmitter configurations will not allow for UHD along with full carriage of 3 or 4 1080p59.9

Why you may need Hybrid sooner than later

- Some networks will have occasional UHD content as early as 2020
 - Consumer electronics manufacturers will advertise UHD TV's
 - Local Electronics stores and chains will advertise with cooperative dollars
 - A shared transmitter will probably not have enough bandwidth for UHD, certainly not two
 - OTT delivery can provide the necessary bandwidth without equipment budget
- Many shared transmitters will not have space for secondary channels
 - These channels can be transmit OTT with no transmitter bandwidth
 - Secondary channels can be in HD when delivered via OTT
- Early adaptor consumers will set the tone for the rollout
 - Early adopters need to see a difference between ATSC 1.0 and 3.0

- A single Media Presentation Description (MPD) is used to signal A/V on broadcast and broadband
- The receiver can seamlessly switch between OTA and OTT
- OTT reception is only possible if OTA is present
- Examples of hybrid delivery of A/V streams:
 - Same service over broadcast and broadband but with different qualities (HD OTA, UHD OTT)
 - Enhanced tuning time
 - OTT error correction / recovery for OTA
 - Main service over broadcast: DVR, Pause, Start Over, Rewind OTT

About Statistical Multiplexing

Statistical Multiplexing

- Statistical Multiplexing is STATISTICAL
 - i.e. it's not **ALWAYS** going to work the way you want
 - Constant Bitrate = Variable Quality
 - Variable Bitrate = Constant Quality
 - The actual instantenous quality is determined by total pool complexity
 - The complexity varies continuously
 - It works because some channels have light complexity while others have high complexity
 - It doesn't work when all channels have high complex simultaneously
 - The more channels there are the more likely that the statistics will balance out for consistent quality
 - The quality will vary with time, one measure of quality is the percentage of time the picture is unacceptable
 - With few channels there is efficiency gain, but the quality will be more variable

Statistical Multiplexing

- The instantenous bitrate for each channel is determined by the required bits to achieve the target quality
- The sum of the channel bitrates must equal a constant bitrate, otherwise null packets will be needed to fill between peaks
- The target quality is determined by:
 - Channels with equal priority should have equal quality
 - Channels with lower or higher priority will have adjusted quality, lower or higher
- It is possible to target a given bitrate, but the required bitrate is fundamentally determined by:
 - Video format: Pixels per second H x V x FR
 - HD uses fewer bits per pixel than SD, UHD less than HD...
 - Complexity: Motion x Detail
 - Nearby pictures: scene, transitions, pan, flash, fade, camera shake, film registration
 - Noise: camera noise, film grain, existing encode artifacts

Statistical Multiplex Example

Statistical Multiplex Example

About Bitrates

- Factors which determine video quality:
 - Maximum bitrate that's available to a channel
 - Average bitrate (pool / channels)
 - The content present on the other channels
- In a large pool the quality is more closely related to the maximum bitrate than the average
 - Max = Pool (sum of mins) OR the max setting, whichever is lower
- The average bitrate should be determined by the encoder, not forced upon the channel
 - Modern encoders are smart, they will balance the channels naturally
 - Forcing an average per program reduces overall video quality
 - But a forcing an average makes contracts easier to write
- The minimum bitrate has very little to do with quality
 - High minimum bitrates will degrade other channels more than they improve the target channel
 - If every stream has a high minimum it is no longer a statmux: it will be CBR
 - Overall quality is improved when there are more bits that can be "moved"
 - A good encoder has lookahead to ensure there are enough bits available around scene change and transitions
- HD requires fewer bits per pixel, but SD allows for higher statmux gain

Sample bitrate as Run (in Excel)

	Paste	Co _l	py v	В	I	<u>u</u> -	— <u>→</u> →	<u>A</u> -	_ = = :	 = = =	E ∰ Merge	e & Center ▼	\$ - 9	% ,	€ :0 .00	.00 - X 0
	Clip	board	i s			Fo	nt	G _i		Alignmer	nt	15	i	Number		
	15	¥	× ✓	f _x												
		- '		J												
4	A		В	С	D	Е	F	G	Н	1	J	К	L	М	N	(
1	Date		Time	SI	Ghost		WXXX HD	WXXY HD	WXXX SD1		WXXY SD1		Total			
2	10/15/2		19:26:31			514368	5534720	3806624	2051456							
3	10/15/2		19:26:32			494816	5608416	3284736	2447008							_
4	10/15/2		19:26:33			484288	6157376	3328352	2803456				18562368			
5	10/15/2		19:26:34			499328	6769504	3779552	2204864	3011008	2042432		19273760			
5	10/15/2		19:26:35			512864	7470368	2812480	2335712		2123648					
7	10/15/2		19:26:36			512864	6883808	2647040	2929792							
3	10/15/2		19:26:37			527904	6916896	3322336	2898208		2326688					
9	10/15/2		19:26:38			452704	6298752	2394368	2612448			709888	17488512			
0			19:26:39			505344	6930432	2419936	3902880		1744640					
1			19:26:40			499328	6276192	2522208	3384000		2004832		19248192			
2			19:26:41			505344	5400864	4193152	3047104	4205184			19729472			
3			19:26:42			517376	7049248	3424608	2665088							
4			19:26:43		0	482784	6752960	3301280	2988448							
5		019	19:26:44	48128	0	497824	4770688	3364448	3448672	4618784	1741632	827200	19317376			
6	10/15/2	019	19:26:45	51136	0	514368	6172416	3781056	2092064	4829344	1717568	730944	19888896			
7	10/15/2	019	19:26:46	49632	0	490304	7706496	3356928	1479936	3501312	1528064	633184	18745856			
8	10/15/2	019	19:26:47	49632	0	508352	7322976	2594400	1953696	4521024	2104096	606112	19660288			
9	10/15/2	019	19:26:48	51136	0	491808	7715520	2487616	2243968	3484768	1923616	576032	18974464			
:0	10/15/2	019	19:26:49	48128	0	500832	7235744	2774880	1968736	4120960	1911584	756512	19317376			
!1	10/15/2	019	19:26:50	51136	0	517376	7341024	2764352	1955200	4690976	1899552	669280	19888896			
2	10/15/2	019	19:26:51	51136	0	502336	4754144	3696832	2410912	5497120	1529568	875328	19317376			
!3	10/15/2	019	19:26:52	78208	0	792608	8434432	6396512	3044096	6191968	2628992	2952352	30519168			
4	10/15/2	019	19:26:53	21056	0	186496	2517696	1391200	1158080	1194176	682816	248160	7399680			
:5	10/15/2	019	19:26:54	48128	0	497824	6697312	3934464	2813984	2979424	1658912	625664	19255712			
:6	10/15/2	019	19:26:55	51136	0	508352	6328832	3767520	4066816	2744800	1442336	613632	19523424			
:7	10/15/2	019	19:26:56	49632	0	520384	7607232	2659072	3185472	3738944	1451360	625664	19837760			
:8	10/15/2	019	19:26:57	49632	0	502336	6038560	2445504	2636512	4778208	2262016	604608	19317376			
9	10/15/2	019	19:26:58	48128	0	481280	5363264	3095232	1898048	4179616	2911744	554976	18532288			
0	10/15/2	019	19:26:59	51136	0	499328	6486752	3784064	2419936	3329856	2343232	628672	19542976			
-																

Forgotten ATSC 1.0 Formats

Vertical	Horizontal	Aspect	Frame Rate		
			24, 30	Progressive	
1080	1920	16x9 (square)	30	Interlaced	
720	1280	16x9 (square)	24, 30 , 60	Progressive	
			24, 30 , 60	Progressive	
480	704	4x3, 16x9	30	Interlaced	
			24, 30, 60	Progressive	
480	604	4x3 (square)	30	Interlaced	

- Of the original A53 formats, only 3 are widely used
- 2 currently unused formats have promise for reintroduction
- 720p30 offers HD at half the current HD bitrates
- 480p30 offers clearer pictures for SD, but at similar bitrates

Final Thoughts

Final Thoughts

- The ATSC 3.0 transition will require unpresented cooperation between broadcasters
- The greatest challenge is going to be channel sharing
- Getting a station on the air in 3.0 is less of a challenge than keeping 1.0 service alive
- The challenges are legal as well as technical
- There is intense focus on legal agreements based on bitrates
- BUT continuity and quality of service are not defined just by bitrates

©2019 Harmonic Inc. All rights reserved worldwide.

Thank You

MPEG 2 VQ: Making the Nightlight work

